
International Journal of Scientific & Engineering Research Volume 10, Issue 11, November-2019                               586 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

Equilibria in the Tangle 
M.SANDHYA 

B.Ed  

SRI RAGHAVENDRA COLLEGE OF EDUCATION 

 

Abstract 

 We analyse the Tangle a DAG-valued stochastic process where new 

vertices get attached to the graph at Poissonian times, and the attachment's 

locations are chosen by means of random walks on that graph. These new vertices 

(also thought of as "transactions") are issued by many players (which are the 

nodes of the network), independently. We prove existence of ("almost 

symmetric") Nash equilibria for the system where a part of players tries to 

optimize their attachment strategies. Then, we also present simulations that show 

that the “selfish" players will nevertheless cooperate with the network by 

choosing attachment strategies that are similar to the "recommended" one. 

Keywords: random walk, Nash equilibrium, directed acyclic graph, 

cryptocurrencv, tip selection 

1 Introduction 

  we study the Tangle, a stochastic process on the space of (rooted) Directed 

Acyclic Graphs (DAGs). This process "grows" in time, in the sense that new vertices are 

attached to the graph according to a Poissonian clock, but no vertices/edges are ever 

deleted. When that clock rings, a new vertex appears and attaches itself to locations that 

are chosen with the help of certain random walks on the state of the process in the recent 

past (this is to model the network propagation delays); these random walks therefore play 

the key role in the model. 

Random walks on random graphs can be thought of as a particular case of Random Walks 

in Random Environments: here, the transition probabilities are functions of the graph 

only, i.e., there are no additional variables (such as conductances etc.) attached to the 

vertices and/or edges of the graph. Still, this subject is very broad. and one can find many 

related works in the literature. One can mention the internal DLA models  

Let us stress also that.,  we consider only "selfish" players (those who only care about 

their own costs but still want to use the network in a legitimate way3); we do not consider 

the case when there are "malicious" ones (those who want to disrupt the network even at a 

cost to themselves). We are going to treat several types of attacks against the network in 

the subsequent papers. 

1.1 Description of the model 

In the following we introduce the mathematical model describing the Tangle. 
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 Let card(A) stand for the cardinality of (multi)set A. For an oriented multigraph     

T = (𝑉, E), where V is the set of vertices and E is the multiset of edges, and u ∈ V, we 

denote by 

                    degin (u) = card{e = (u1, u2) ∈ E : u2 = u},  

                    degout (u) = card{e = (u1, u2) ∈ E : u1 = u} 

the "incoming" and "outgoing" degrees of the vertex u (counting the multiple edges). In 

the following, we refer to rnultigraphs simply as graphs. For u, v ∈ V, we say that u 

approves v, if (u. v) ∈ E. We use the notation A(u) for the set of the vertices approved by 

u. We say that u ∈ V references v ∈ V if there is a sequence of sites u = x0, x1…., xk = v 

such that, xj ∈ A (xj - 1) for all j = 1,…, k, i.e., there is a directed path from u to v. If 

degin(w) = 0 (i.e., there are no edges pointing to w), then we say that w ∈ V is a tip. 

 Let G be the set of all directed acyclic graphs (also known as DAGs, that is, 

oriented graphs without cycles) G = (V, E) with the following properties: 

 the graph G is finite and the multiplicity of any edge is at most two (i.e., there are 

at most two edges linking the same vertices); 

 there is a distinguished vertex ℘ ∈ V such that degout(v) = 2 for all v ∈ V \{℘},  

and degout (℘) = 0 (this vertex ℘ is called the genesis); 

 any v ∈ V such that v ≠ ℘ references ℘; that. is, there is an oriented path4 from v 

to ℘ (one can say that the graph is connected towards ℘). 

 

 

 We now describe the tangle as a continuous-time Markov process on the space g. 

The state of the tangle at tune t ≥ 0 is a DAG T(t) (VT(t), ET(t), where VT(t) is the set of 

vertices and ET(t) is the multiset of directed edges at time t. The process's dynamics are 

described in the following way: 

 The initial state of the process is defined by VT(0) = ℘  ET(0) = ∅ 

 The tangle grows with time., that is, VT(t1) ∁ VT(t2) and ET(t1) ∁ ET(t2) whenever  

0 ≤ t1 < t2.  

 For a fixed parameter 𝜆 > 0, there is a Poisson process of incoming transactions; 

these transactions then become the vertices of the tangle. 

 Each incoming transaction chooses5 two vertices v' and v" (which, in general, may 

coincide), and we add the edges (v. v") and (v, v"). We say in this case that this 

new transaction was attached to v' and v" (equivalently, v approves v' and v"). 

 Specifically, if a new transaction v arrived at time t’, then VT(t'+) = VT(t')∪{v}, 

and ET(t’+) = ET(t) ∪ {v, v'}, (v, v"}. 

Let us write 

P(t) (x) = {y ∈ T(t) : y is referenced by x}, 
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F(t) (x) = {z ∈ T(t) : z references x} 

for the "past" and the "future" with respect to x (at time t). Note that these introduce a 

partial order structure on the tangle. Observe that, if t0 is the time moment. when x was 

attached to the tangle, then 𝑃(t)(x) = P(t0) (x) for all t ≥ t0. We also define the cumulative 

weight ℋ𝑥
(𝑡)

of the vertex x at time t by 

                                         ℋ𝑥
(𝑡)

 = 1 + card (ℱ(f) (x));                                                   (1) 

 

that is, the cumulative weight of x is one (its "own weight') plus the number of vertices 

that reference it. Observe that, for any t > 0, if y approves x then ℋ𝑥
(𝑡)

- ℋ𝑥
(𝑡)

 ≥ 1, and the 

inequality is strict. if and only if there are vertices different. from y which also approve x. 

Also note that the cumulative weight. of any tip is equal to 1. 

 There is some data associated to each vertex (transaction), created at the moment. 

when that transaction was attached to the tangle. The precise nature of that data is not 

relevant for the purposes of this paper, so we assume that it is an element of some 

(unspecified. but finite) set 𝒟; what is important. however, is that there is a natural way to 

say if the set of vertices is consistent with respect to the data they contain6. When it is 

necessary to emphasize that the vertices of G ∈ ℊ contair some data, we consider the 

marked DAG (𝔡) to be (G,𝔡  = (V, E, 𝔡), where 𝔡 is a funcion V —› D. We define g to be 

the set of all marked DAGs (G,0), where G E ℊ. 

 

1.2 Attachment strategies 

 

There is one very important detail that has not been explained, namely: how does a newly 

arrived transaction choose which two vertices in the tangle it will approve, i.e., what is the 

attachment strategy? Notice that, in principle. it would be good for the whole system if 

the new transactions always prefer to select tips as attachment. places, since this way 

more transactions would he "confirmed'7. In any case, it is quite clear that the appropriate 

choice of the attachment strategy is essential for the correct functioning (whatever this 

could mean) of the system. 

 It is also important to comment that the attachment strategy of a network node is 

something “internal” to it; what others can see, are the attachment choices of the node, but 

the mechanism behind them need not be publicly known. For this reason, an attachment st 

rategy cannot be imposed in the protocol. 

 We now describe a possible choice of the attachment strategy, used to determine 

where the incoming transaction will be attached. It is also known as the recom-mended tip 

selection algorithm, since, due to reasons described above, the recom-mended nodes' 

behavior is always to try to approve tips. We stress again, however, that approving only 

tips is not imposed in the protocol, since there is usually no way to know if a node "knew" 

if the transaction it approved was already approved by someone else before (also, there is 

no way to know which approving transaction was the first). 

 Let us denote by ℒ(t) the set of all vertices that are tips at time t, and let L(t) = card 

(ℒ(t)). To model the network propagation delays, we introduce a parameter h > 0, and 
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assume that at, time t only T (t-h) is known to the entity that issued the incoming 

transaction. We then define the tip-selecting random walk, in the following way. It 

depends on a parameter q (the backtracking probability) and on a function f. 

__________________________________ 
6one may think that the data refers to value transactions between accounts,and consistency 

means that no account has negative balance as a result, and/or the total balance has not 

increased 
7we discuss the exact meaning of this later; for now, think that "confirmed" means 

"referenced by many other transactions" 

 

The initial state of the random walk is the genesis ℘8, and it is stopped upon hitting the set 

ℒ(t — h). It is important to observe that v ∈ ℒ(t — h) does not necessarily mean that v is 

still a tip at time t. Let f : ℝ+→ℝ+ be a monotone non-increasing function. The transition 

probabilities of the walkers are defined in the following way: the walk backtracks (i.e., 

jumps to a randomly chosen site it approves) with probability q ∈ [0,1/2); if y approves x 

≠ ℘, then the transition probability 𝑃𝑥𝑦
(𝑓)

 is proportional to f (ℋr - ℋy), that. is, 
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(for x = ℘ we define the transition probabilities as above, but with q = 0). In what follows, 

we will mostly assume that f (s) = exp( −αs) for some a ≥ 0. We use the notation P(α) for 

the transition probabilities in this case. Intuitively, the smaller is the value of α. the more 

random the walk is9. It is worth observing that the case q = 0 and α →∞ corresponds to 

the GHOST protocol of [21] (more precisely, to the obvious generalization of the GHOST 

protocol for the case when a tree is substituted by a DAG). 

Now, to select two tips w1 and w2 where our transaction will be attached, just run two 

independent random walks as above, and stop when you first hit ℒ(t−h). One can also 

require that w1 should be different from w2; for that, one may re-run the second random 

walk in the case its exit point happened to be the same as that of the first. random walk. 

Observe that. (T(t), t ≥ 0) is a continuous-time transient Markov process on 𝒢; since the 

state space is quite large, it is difficult to analyse this process. In particular, for a fixed 

time t, it is not easy to study the above random walk since it takes place on a random 

graph, e.g., can be viewed as a random walk in a random environment; it is common 

knowledge that random walks in random environments are notoriously hard to deal with. 
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We say that a transaction is confirmed with confidence 𝛾0 (where - 𝛾o is some pre-defined 

number, close to 1), if, with probability at least – 𝛾0, the large- α random walk 10 ends in a 

tip which references that transaction. It. may happen that a transaction 

  

 

 

 
 

Figure 1: The walk on the tangle and tip selection. Tips are circles and transactions which 

were approved at least once arc disks. 

does not get confirmed (even, possible, does not get approved a single time), and becomes 

orphaned forever. Let us define the event 

   𝒰={every transaction eventually gets approved}. 

We believe that the following statement holds true; however, we have only a heuristical 

argument in its favor, not a rigorous proof. In any case, it is only of theoretical interest, 

since, as explained below, in practice we will find ourselves in the situation where ℙ[𝒰] = 

0.We therefore state it as 

Conjecture 1.1. It holds that 

 

 ℙ[𝒰] =

0,
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0

0
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      (3) 

 

Explanation. First of all, it should be true that ℙ[𝒰] ∈ {0, 1} since 𝒰  is a tail event with 

respect to the natural filtration; however, it does not seem to be very easy to prove the 0-1 

law in this context. (recall that we are dealing with a transient Markov process on an 

infinite state space). Next, consider a tip v0 which got attached to the tangle at time t0, and 

assume that it is still a tip at time t ≫ t0; also, assume that, among all tips, v0 is "closest. 

(in some suitable sense) to the genesis. Let us now think of the following question: what is 

the probability that v0 will still be a tip at time t + 1? 
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Look at Figure 1: during the time interval [t, t + 1], O (1) new particles will arrive, and the 

corresponding walks will travel from the genesis ℘ looking for tips. Each of these Walks 

will have to cross the dotted vertical segment on the picture, and with positive probability 

at least one of them will pass through w0, one of the vertices 

approved by v0. Assume that w0 was already confirmed (i.e., connected to the right end of 

the tangle via some other transaction u0 that approves w0). Then, it is clear (but not easy to 

prove!) that the cumulative weight of both u0 and w0 should be O (t), and so, when in w0, 

the walk will jump t.o the tip v0 with probability f (O(t)). 

 The probability that v0 ∈ ℒ(t + 1) (i.e., that v0 still is tip at time t + 1) is f (O (t)), 

and the Borel-Cantelli lemmall gives that the probability that v0 will be eventually 

approved is less than 1 or equal to 1 depending on whether ∑n f (n) converges or diverges; 

the convergence (divergence) of the sum is equivalent to convergence (divergence) of the 

integral in (3) due to the monotonicity of the function f. A standard probabilistic 

argument12 would then imply that if the probability that a given tip remains orphaned 

forever is uniformly positive, then the probability that at least one tip remains orphaned 

forever is equal to 1. 

  It would be better to choose the function f in such a way that, almost surely, every 

tip eventually gets confirmed,there is a good reason to choose a rapidly decreasing 

function f, because this defends the system against nodes' misbehavior and attacks. The 

idea is then to assume that a transaction which did not get confirmed during a sufficiently 

long period of time is "unlucky", and needs to be reattached13 to the tangle. Let us fix 

some K > 0: it stands for the time when an unlucky transaction is reissued (because there 

is already very little hope that it would be confirmed 'naturally"). We call a transaction 

issued less than K time units ago "unconfirmed", and if a transaction was issued more than 

K time units ago and was rot confirmed, we call it "orphaned". In the following, we 

assume that the system is stable, in the sense that the "recent" unconfirmed transactions 

do not accumulate and the time until a transaction is confirmed (roughly) does not depend 

on the moment when it appeared in the system. 

 Let p be the probability that a transaction is confirmed K time units after it was 

issued for the first time; the number of times a transaction should be issued to achieve 

confirmation is then a Geometric random variable with parameter p (and, therefore, with 

expected value p−1); so, the mean time until the transaction is confirmed is K/p. Let us 

then recall the following remarkable fact be-longing to the queuing theory, known as the 

Little's formula (sometimes also referred to as the Little's theorem or the Little's identity): 

 

2  Selfish nodes and Nash equilibria 

  The situation when some participants of the network are "selfish" and want to use 

a customized attachment strategy, in order to improve the confirmation time of their 

transactions (possibly at the expense of the others). 

    For a finite set A let us denote by ℳ (A) the set of all probability measures on A, that is 
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      ℳ(A) ={𝜇 : A ⟶ ℝ such that 𝜇 (a) ≥0 for all a ∈ A and  ∑ 𝜇(𝑎)𝑎∈𝐴  = 1} 

Let 

𝔚 =  ⋃ ℳ(𝑉 𝑥 𝑉)𝐺=(𝑉,𝐸) ∈𝒢  

be the union of the sets of all probability measures on the pairs of (not necessarily  

distinct) vertices of DAGs belonging to 𝒢. Then, an attachment strategy 𝒮is a map  

 

𝒮 : 𝒢[𝔡] ⟶ 𝔚 

 

with the property 𝒮 (V, E, 𝔡 ) ∈ ℳ(V x V) for any G[𝔡] = (V, E, 𝔡) ∈ 𝒢[𝔡]; that is, for any   

G∈ 𝒢  with data attached to the vertices (which corresponds to the state of the tangle at a 

given time) there is a corresponding probability measure on the set of pairs of the vertices. 

Note also that in the above we considered ordered pairs of vertices, which, of course, does 

not restrict the generality. 

Let k > 0 be a fixed number. We now assume that, for a (very) large N, there are kN nodes 

that follow the default tip selection algorithm, and N "selfish" nodes that try to minimize 

their "cost", whatever this could mean16. Assume that all nodes issue transactions with the 

same rate 
⋋

(𝑘+1)𝑁
, independently. The overall rate of "honest" transactions in the system is 

then equal to 
⋋𝑘

𝑘+1
, and the overall rate of transactions issued by selfish nodes equals 

⋋

(𝑘+1)
. 

Let S1,...,SN be the attachment strategies used by the selfish nodes. To evaluate the 

"goodness" of a strategy, one has to choose and then optimize some suitable observable 

(that stands for the "cost"); as usual, there are several "reasonable" ways to do this. We 

decided to choose the following one, for definiteness and also for technical reasons (to 

guarantee the continuity of some function used below); one can probably extend our 

arguments to other reasonable cost functions. Assume that a transaction v was attached to 

the tangle at time tv  so v ∈ T(t) for all t ≥ tv. Fix some (typically large) M0 ∈ ℕ. Let 𝑡1
(𝑣)

,... 

𝑡𝑀0
(𝑣)

 be the moments when the subsequent (after v) transactions were attached to the 

tangle. For k = 1 . M0 let 𝑅𝑘
(𝑣)

 be the event that the default tip-selecting walk17 on T 

(𝑡𝑘
(𝑣)

) stops in a tip that does not reference v. We then define 

                                           W(v) =  ( ) ( )
1 0

1 .... 1v v
MR R

                                              (4) 

to be the number of times that the M0 "subsequent" tip selection random walks do not. 

reference v (in the above, 1A is the indicator function of an event. A). Intuitively, the 

smaller is the value of W(v)/M0, the bigger is the chance that v is quickly confirmed. 

     assume that (𝑣𝑗
(𝑘)

, j ≥ 1) are the transactions issued by the kth (selfish) node. We 

define 

                            ℭ(k)(S1,....,SN) = 𝑀0
−1 lim

𝑛→∞

𝑊(𝑣𝑗
(𝑘)

)+⋯+𝑊(𝑣𝑛
(𝑘)

)

𝑛
 ,                                  (5) 
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to be the mean cost of the kth node given that (S1,....,SN) are the attachment strategies of 

the selfish nodes.   

 

3   Simulations 

 we investigate Nash equlibria between selfish nodes via simulations. This is 

motivated by the following important question: since the choice of an attachment strategy 

is not enforced, there may indeed be nodes which would prefer to “optimise” their 

strategies in order to decrease the mean confirmation time of their transactions. So, can 

this lead to a situation where the corresponding Nash equlibrium is“bad for everybody” , 

effectively leading to the system’s malfunctioning (again, we do not specify the exact 

meaning of that)? 

     we may assume that all selfish nodes use the same attachment strategy. Even then, 

it is probably unfeasible to calculate that strategy exactly: instead, we resort to 

simulations,which indeed will show that the equlibrium strategy of the selfish nodes will 

not be much different from the (suitably chosen) default strategy. But, before doing that, 

let us explain the intution behind this fact. Naively, a natural strategy for a selfish node 

would be the following.   

 

(1) Calculate the exit distribution of the tip-selecting random walk. 

(2) Find the two tips where this distribution attains its "best" 21 values. 

(3) Approve these two tips. 

    This strategy fails when other selfish nodes are present. To understand this, look at 

Figure 2: many selfish nodes attach their transactions to the two "best" tips. As a result. 

the "neighborhood" of these two tips becomes "overcrowded": there is so much 

competition between the transactions issued by the selfish nodes, that the chances of them 

being approved soon actually decrease22. 

   To illustrate this fact, several simulations have been done. All the results depicted 

here were generated using (2) as the transition probabilities, with q = 1/3, and a network 

delay of h = 1. Also, a transaction will be reattached if the two following criteria are met: 

 

(1) the transaction is older than 20 seconds23; 

(2) the transaction is not referenced by the tip selected by a random walk with 

 𝛼 =  ∞24 

      

 This way, we guarantee not only that the unconfirmed transactions will be 

eventually confirmed, but also that all transactions that were never reattached are 

referenced by most of the tips. Note that when the reattachment is allowed in the 

simulations, if a new transaction references an old, already reattached transaction together 

with its newly reissued counterpart, there will be a double spending. Even though the odds 

of that are low (since when a transaction is re-emitted, it will be old enough to be almost 
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never chosen by the random walk algorithm), a specific procedure was included in the 

simulations in order to not allow double spendings. 

     It depicts the typical cumulative distribution of the time of the first approval, for a 

low  𝛼 and ⋋h = 50. Note that roughly 95% of the transactions will be approved before t = 

5s, and almost the totality of transactions will be approved before t = 10s. That behaviour 

will be similar for all studied parameters. The average cost defined in equations (5) and 

(4) will have a certain meaning, depending on the choice of M0. This average cost will be 

related to the average time of approval of a transaction (indeed, the average time will be 

approximately W/⋋). So, in both cases (⋋ = 25 and ⋋ = 50), the mean cost was calculated 

over the transactions attached at a interval of time of approximately 10s (M0 = 500 for ⋋ = 

50 and M0 = 250 for ⋋ = 25), what makes this cost something reasonable to optimise. 

 

 

 

 

Figure 3: Cumulative distribution of time of approvals for some values of p (that will be 

defined later) 

 

 

 

 

3.1  One dimensional Nash equilibria 

 

 we will study the Nash equilibria of the tangle problem, considering the  following 

strategy subspace: 

Si = S = (1 − 𝜃)S0 + 𝜃 S1 for each i = 1,...., N , 
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where S0 is the default tip selection strategy, S1 is the selfish strategy defined in the 

beginning of this section and 𝜃 ∈ [0,1]. The goal is to find the Nash equilibria relative to 

the costs defined in the last section (equations (5) and (4)). The selfish nodes will try to 

optimise their transaction cost with respect. to 𝜃. 

    Now, suppose that we have a fixed fraction 𝛾 of selfish nodes, that chooses a strategy 

among the possible S. The non-selfish nodes will not be able to choose their strategy, so 

they will be restricted, as expected. to S0. Note that, Since they can not choose their 

strategy, they will not "play" the game. Since the costs are linear over S, such mixed 

strategy game will be equivalent to a second game where only a fraction p = 𝛾𝜃 ≤ 𝛾 of the 

nodes chooses S1 over S0, and the rest of the nodes chooses S0 over S1. 

 

 

 

 

Figure 4 (a) represents a typical graph of average costs of transactions issued under So and 

SI, as a function of the fraction p, for a low a α and two different values of λ. As already 

demonstrated, when in equilibrium, the selfish nodes should issue transactions with the 

same average cost. That. means that the system should reach equilibrium in one of the 

following states: 

(1) some selfish nodes choose S0 and the rest choose S1; 

(2) all selfish nodes choose S1; 

(3) all selfish nodes choose S0. 

(a)     (b) 

 

 Figure 4: Costs (a) and gain of the strategy S1 over 80; (b) for α = 0.01. 

 If the two curves on the graphs do not intersect, the equilibrium should be clearly 

at state (2) or (3), depending on which of the average costs is larger. If the two curves on 
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the graphs intercept each other, we will also have the intersection point. as a Nash 

equilibrium candidate. We calls s the vector of strategies on equilibrium and p the fraction 

of nodes that will issue transactions under S1 when the system is in s. We define p− = �̅� 

− 
𝛾

𝑛
 and p+ = �̅�  +  

𝛾

𝑛
, meaning that p− and p− will be deviations from �̅�, that result from 

one node switching strategies, from S0 to S1 and from S1 to S0, respectively. We also 

define �̅�1 and �̅�2 as strategy vectors related to p−and p+. Note on Figure 3.1 that this kind 

of  Nash equilibrium candidate may not he a real equilibrium, when the system is at point 

�̅� and a 

 

 

 

 Figure 5: Different Nash equilibrium points in systems with similar curves 

node switches strategies, from S0 to S1, the cost actually decreases so �̅� cannot be a Nash 

equilibrium. On the other hand, the second example shows a Nash equilibrium at point �̅�, 

since deviations to p− and p+ will increase costs. 

 let us re-examine Figure 4(a). Here, the Nash equilibrium will occur atthe point �̅�, 

since we have a situation as on Figure 3.1(b). That point is easily found at Figure 4(b), 

when δ = 0. Note that the Nash equilibrium for a larger λ will be at a smaller ∅0 than the 

Nash equilibrium for a smaller λ. This was already expected, since, for a larger λh, the tips 

will be naturally more "overcrowded", so the effect depicted at Figure 2 will be amplified. 

Thus, the Nash equilibrium for the higher λh cases must occur with a smaller proportion 

of transactions issued with the pure strategy S1. 

Reconsider now the mixed strategy game. In the case when all the nodes are allowed to 

choose between the two pure strategies (S0 and S1), the Nash equilibrium will be indeed at 

∅0 = �̅� (as expected, since in this case γ = 1). If just a fraction γ = p/∅ > �̅� of the nodes is 

selfish, then the Nash equilibrium will occur when ∅0 = �̅�/ γ. Now, if γ ≤ �̅�, the costs of 

the nodes will not coincide25. In that case, the average cost of transactions under S1 will 

always be smaller than the average cost of transactions under S0, meaning that the Nash 

equilibrium will be met at ∅0 =1. Summing up, the Nash equilibrium ∅0, in these cases, 

will he met at: 
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∅0 = min{�̅�/γ, 1}. 

 

 

 

 

 

 

(a)  

(b) 

 

Figure 6: Costs (a.) and gain (b) of the strategy S1 over S0; for α = 0.5. 

 Figure 6(a) represents a typical graph of average costs of transactions under S0 and 

transactions under S1 as a function of fraction p, for a higher α. In that case, even though 

the average costs of transactions under S0 and transactions under S1 do not coincide for 

any reasonable p (meaning that, here, the Nash equilibrium will be met at ∅ = 1), the 

typical difference between the possible pure strategies (that, from now on, we will call 

absolute gains) will be low, as depicted on Figure 6(b). 

 Figure 7 shows the average cost increase imposed on the nodes following the 

default strategy by the nodes issuing transactions under S1. Let W(p) be the non-greedy 

nodes costs depicted in Figure 6(a). The cost increase is calculated as (W(p)− W(0)/W(0), 

so it will be the perceptual difference of the cost of a non-selfish node in the presence of a 

percentage p of selfish transactions and the cost of a non-selfish node when there are no 

selfish transactions at all. This difference is low, meaning that the presence of selfish 

nodes do not harm the efficiency of the non-selfish nodes. Note that this difference is 

small for all reasonable values of p, but even for the larger available p, the difference is 

less than 25%. An interesting phenomenon, as shown in the same graph, is that the 

average cost increase imposed on the non-greedy nodes may actually be negative. For low 

values of α, just. a small fraction of the transactions under S° will share the approved tips 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 11, November-2019                               598 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

with the transactions under S1. This fraction of transactions will approve overcrowded 

tips, and will have their costs increased. All the other transactions under S° will have their 

sites less crowded, since an increase 

 

 

 

 

 

 

  

 

Figure 7: Cost increase of the transactions issued by the strategy S0 induced by the 

presence of transactions emitted by the strategy S1. in percentage. 

 

in S1 will mean a decrease in competition over these transactions. Finally, on average, the 

honest nodes will have their costs decreased. 

 Figures 8 and 9 are analogous to the first figures, for other values of α and λh; part 

(a) of each figure represents average costs and part (b) absolute gains. 

 

 

3.2 Multidimentional Nash equilibria 

In the same way as the last section, a game with a. mixed strategy space: 
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where 
0

,
N

i

i

i

S S


  = 1 and {Si}i=0,….,N a set of strategies is equivalent to a game where the 

nodes must choose among the simple strategies {Si}. That means all the possible strategies 

must have the same cost in order to the game reach some equilibrium. In this case, in 

order to simplify the data, the studied object was the probability of a given tip to be 

chosen by the selfish nodes and the non-selfish nodes. These studied tips were ordered by 

the random walk exit probability, from the most probable to the least probable. Figure 10 

represents the typical probability profile for the selfish and non-selfish nodes. The typical 

gain of the selfish nodes and the increase of the 
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 Figure 8: Costs (a) and gain (b) of the strategy S1 over S0; for α = 0.05. 
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 Figure 9: Costs (a) and gain (b) of the strategy S1 over S0; for α =1. 

 

 

  

Figure 10: Exit probabilities in the equilibrium for the selfish and the non-selfish nodes. 

non-selfish nodes average cost due to the presence of selfish nodes are both small; in our 

simulations they were always less than 10% (3.615% for the maximum gain and 7.0 % for 

the maximum of the cost increase of the non-selfish nodes induced by the selfish ones, 

comparing all parameters of λ and α). 
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